
1

BREWTM Developer Training

Module 13B:
Using The ISprite APIs

2

Module Objectives

Describe the animated image capabilities provided
by the ISprite Interface

2

3

Sprites Overview

Definitions of Sprites on the Web:
• Disembodied spirits, elves, fairies or daemons; often

the term used for the Air elemental known as
"sylphs," or as the name of the elementals of Spirit.
www.spiritualitea.com/articles/paganglossary.shtml

• A small bitmap image, often used in animated games.
www.siprep.org/clubs/tech/main/glossary/

ISprite introduced in BREW V2.0:

4

Sprite Game example

Downloaded from BREW Developer site

3

5

Sprite Attributes

Consist of bitmaps of uniform size:
• 8x8, 16x16, 32x32 or 64x64 pixels

Large images can be created from compositions
of smaller bitmaps
Sprites are moved by setting their x,y location
Illusion of depth - sprites assigned to one of four
layers
Automatic hidden line removal
Transparency

6

Tile Attributes

Used to portray the background for your
animation.
Like Sprites, Tiles consist of bitmaps of uniform
size:
• 8x8, 16x16, 32x32 or 64x64 pixels

Large background images is created from
compositions of smaller bitmaps as specified by
the Tile Map

4

7

Sprite / Tile Creation

Tiles and Sprites are stored
in independent bitmaps
Down in one long column,
one image after the next.
First NxN image is
numbered 0; next is 1; etc.
Notice use of pure green as
transparent color.

8

Common ISprite Functions

ISPRITE_SetDestination()
Binds a previously created IBitmap to the ISprite Interface
Target buffer of Draw commands

ISPRITE_SetTileBuffer()
ISPRITE_SetSpriteBuffer()
Passes address of previously opened IBitmap object and number of

items contained within. Source buffer for Draw commands

ISPRITE_DrawTiles()
Draws all tiles as defined in AEETileMap array

ISPRITE_DrawSprites()
Draw all sprites as defined in AEESpriteCmd array

5

9

AEETileMap

typedef struct {

uint16 *pMapArray; // array of indices and properties

uint32 unFlags; // only MAP_FLAG_WRAP currently
supported

uint32 reserved[4]; // MUST BE 0
int32 x; // screen coordinates for upper left

int32 y;

uint16 w; // width of tile map in # of tiles
uint16 h; // height of tile map in # of tiles

uint8 unTileSize; // size of tiles (Must be a
// TILE_SIZE_n value)

uint8 reserved2[3]; // MUST BE 0

} AEETileMap;

10

AEESpriteCmd

typedef struct {
int16 x; // screen coordinate
int16 y; // of upper left
uint16 unTransform; // scale, rotate flags
uint8 unMatrixTransform; // from complex

// transformations
uint8 unSpriteIndex; // what sprite to draw
uint8 unSpriteSize; // SPRITE_SIZE_n
uint8 unComposite; // enable transparency
uint8 unLayer; // layer for sprite

// lower numbers drawn 1st
uint8 reserved[5]; // MUST BE 0
} AEESpriteCmd;

6

11

More On Sprite Commands

int ISPRITE_DrawSprites(ISprite *pISprite,
AEESpriteCmd *pCmds);
pISprite Pointer to ISprite interface.
pCmds Array of sprite commands.

This function causes the sprites in the pCmds array to be drawn. The
sprite engine will iterate through the array in order four times. The first
pass will only draw sprites that have the unLayer field set to 0.
Subsequent passes will draw layers 1, 2, and 3, respectively.

The array is terminated by a dummy entry with nSpriteSize set to
SPRITE_SIZE_END.

Sprites are drawn to the bitmap specified by ISPRITE_SetDestination().

12

The Process

1. Create an ISprite Interface using
ISHELL_CreateInstance.

2. Use IDisplay_CreateDIBitmap to create a target
IBitmap onto which ISprite will render tiles and
sprites.

3. Use ISPRITE_SetDestination to bind bitmap to
ISprite Interface

7

13

The Process (con’t)

1. Open and read tiles into a tiles IBitmap
2. Use ISPRITE_SetTileBuffer to pass address.

3. Open and read sprites into a sprite IBitmap
4. Use ISPRITE_SetSpriteBuffer to pass address.

5. Use ISPRITE_DrawTiles to draw background.
6. Use ISPRITE_DrawSprites to draw sprites in

initial position
7. Use IDISPLAY_BitBlt to transfer target IBitmap

to screen.

14

Updating the screen

1. Process Key or Timer Event
• Key - user events
• Timer - Game AI events

2. Perform game calculations to update the
x and y positions of the sprites.

3. Set updated values in SpriteCMD array
4. Optionally update background

and call ISPRITE_DrawTiles()

5. Call ISPRITE_DrawSprites()
6. Blit the bitmap to the screen.

8

15

Collision Detection

Unfortunately collision detection is not provided
by ISprite Interface
Must be manually coded

for (i = 6; i<56; i++) {
if (pMe->rgCmds[4].x > pMe->rgCmds[i].x - 8 && pMe->rgCmds[4].x < pMe->rgCmds[i].x + 8 &&

pMe->rgCmds[4].y > pMe->rgCmds[i].y - 8 && pMe->rgCmds[4].y < pMe->rgCmds[i].y + 8)
{

pMe->unScore++; // increment score on collision
pMe->rgCmds[1].unSpriteIndex = 12 + pMe->unScore % 10 // update and display score
pMe->rgCmds[0].unSpriteIndex = 12 + (pMe->unScore % 100) / 10;

} // end-if
} // end-for

